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An attempt is made to modify super-symmetry groups and the algebra of 
the underlying elements, so that the mappings involved in the realizations 
are those of an ordinary manifold on itself. The resulting group possesses 
representations that transform constant tensors and spinors among each 
other. Applications to fiber bundles lead to fields over general space-time 
manifolds whose structure group is the modified super-symmetry group. 

1. I N T R O D U C T I O N  

Super symmetries are characterized by graded Lie algebras, which differ 
f rom ordinary Lie algebras in that  some elements o f  the algebra satisfy anti- 
commuta t ion  rather than commuta t ion  relations. Ordinary and graded Lie 
algebras have in c o m m o n  that  they are linear vector spaces o f  a bilinear 
mapping  that  assigns to an ordered pair  o f  elements another  element. 
Whereas in an ordinary Lie algebra we have for such ordered pairs always 
the relationship 

(a, b) = - ( b ,  a) = c (1.1) 

in a graded Lie algebra some of  these relationships are replaced by 

(a, b) = (b, a) = c (1.2) 

1 Supported by National Science Foundation Grant No. MPS74-15246. 
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In addition to this relationship there exists an enveloping algebra with a 
different bilinear relationship, the product, which obeys the associative law 

(ab)c =- a(be) (1.3) 

Ordinary Lie algebras have been of interest to physicists because of their 
close relationship to infinitesimal groups, the corresponding finite groups 
representing some symmetry of the physical theory, i.e., some rule by which 
a possible history of a physical system is mapped on another possible history. 
Symmetries permit the arrangement of all possible histories into equivalence 
classes, such that the members of a given equivalence class can be carried over 
into each other by the action of the symmetry group. Presumably, graded Lie 
algebras can be interpreted as representations of an underlying symmetry. 

Super symmetries and their graded Lie algebras include as an (ungraded) 
subalgebra the Poincar6 Lie algebra, or some similar Lie algebra, such as the 
infinitesimal conformal group. Typically, the super symmetries combine in 
their transformation laws quantities with integral spin and quantities with 
half-odd spin. It is the latter that satisfy anticommutation relations among 
themselves, and the anticommutator between two "super-gauge transforma- 
tions" is an element of the infinitesimal Poincar6 group, a translation. 

All the quantities with half-odd spin are assumed to be composed of 
"anticommuting numbers," i.e., of elements of a Grassmann algebra. Their 
product is assumed to satisfy the associative law, but also to be antisymmetric 
in its factors, 

ab + ba = 0 (1.4) 

This assumption is perhaps suggested by the experience with the field quanti- 
zation of fermion fields. Suppose i is an index characterizing a certain state 
of a single fermion, then the annihilation operators a~ form a set ofq numbers 
whose product is skew symmetric, 

a,aj = -a~a,  (a,) 2 = 0 (1.5) 

Since these quantities are linear operators defined on the vector space of sets, 
they form an associative algebra. In spite of these excellent heuristic creden- 
tials, the assumption that the spinors are composed of elements ofa Grassmann 
algebra leads to some undesirable results, which have been described, for 
instance, by Corwin et al. (1975). Specifically, the "translation," the group- 
theoretical commutator (algebraic anticommutator) of two super-gauge 
transformations, though it commutes with all the components of the fermion 
variables, differs from ordinary complex quantities in that it is a null divisor, 
and in fact nilpotent. 

It is the purpose of this paper to explore alternative algebraic con- 
structions, which can serve as the realization of symmetries similar to those 
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postulated in the literature on super symmetries while preserving the space- 
time coordinates as ordinary numbers. The principal novel point of view is 
that the anticommuting numbers will be replaced by elements of a linear 
vector space having either a metric or a symplectic structure; either way the 
product of any two such elements is an ordinary complex number. This 
product does not satisfy the associative law. 

Before we begin with the presentation of this approach, a brief excursion 
into the structure of the super-symmetry group is in order. This group consists 
of Lorentz rotations and translations of space-time and of the super-gauge 
transformations. This group has a homomorphism with the Lorentz rotations 
alone, the normal subgroup including both translations and super-gauge 
transformations. This normal subgroup again has a normal subgroup of its 
own, the translations of space-time. The corresponding factor group can be 
conveniently indexed in terms of the same Majorana spinor 0 that is used to 
describe the super-gauge transformations. This factor group is, however, 
Abelian (because the translations have been factored out) and in fact isomor- 
phic with addition in the linear vector space of the Majorana spinors, 
~0 + riO', where %/3 are complex numbers. 

2. FERMION NUMBERS AND SUPER-GAUGE 
TRANSFORMATIONS 

Majorana spinors are four-component spinors subject to algebraic condi- 
tions that reduce them essentially to two-component (Van der Waerden) 
spinors. In order to avoid the need to keep track of the algebraic conditions 
a two-component notation will be used in all that follows. Any of the equa- 
tions and results can, of course, also be formulated in four-component spinor 
notation, as long as it is understood that all spinors occurring are Majorana 
spinors. In the two-component notation the alternator (= i~2) will be denoted 
by the symbol ~, whose two indices may be both subscripts or superscripts, 
dotted or undotted, as the occasion may demand. 

The components of all spinors will be taken from a linear N-dimensional 
vector space over the field of complex numbers, whose elements will be 
identified with those of its dual space through a reversible linear mapping, 
represented by a real matrix m. Only two classes of mappings will be con- 
sidered, those in which m is symmetric and those in which m is antisymmetric. 
The first case includes the possibility that N = 1; this is the case in which the 
spinor components are ordinary complex numbers. In the second case N must 
be even, and we have a symplectic structure. In the first case m can be 
diagonalized by an appropriate choice of the base. If  rn is antisymmetric, it 
can be given the canonical symplectic form. Whether m is symmetric or anti- 
symmetric, its form will not be changed by real orthogonal or real symplectic 
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substitutions, respectively. Infinitesimal substitutions b of either kind are 
characterized by the condition 

m b +  b r m  = 0 (2.1) 

In all that follows, the bilinear form q r m p  will be written more briefly as qp .  

The two cases indicated above imply either that q p  = p q  or that q p  = - p q .  

Consider a space coordinatized by four real coordinates x" and a spinor 0, 
with components defined on a given linear vector space over the field of  
complex numbers. We shall characterize an infinitesimal super-gauge trans- 
formation with descriptor ~/by the mappings that it causes among the left 
cosets with respect to Lorentz rotations, following the procedure of Salam 
and Strathdee (1974). I f  m is symmetric, we postulate 

30 = 71 3 x  ~' = (i/2)(*1'o"0 - ~TT-~O) (2.2a) 

It  follows that the commutator of two such transformations, with descriptors 
~1 and ~/2, is 

3c0 = 0 3cx" = i(~1~a"~12 --  ~/lrougz) (2.2b) 

In the antisymmetric case the corresponding equations are 

30 = ~7 3x" = �89 + 7/r~';0) (2.3a) 

3c0 = 0 3cx ~ = ~7~*~"~/2 + ~lra"~/2 (2.3b) 

In either case the commutators change signs if the subscripts 1 and 2 are 
interchanged, as required. We emphasize that all the expressions for 3x", 3cx" 
are ordinary numbers and real. 2 

Exponentiation of the infinitesimal mappings (2.2) and (2.3), respectively, 
is trivial, as the second-order terms in the exponential expansion are already 
zero. Accordingly, the construction of products of finite transformations and 
of commutators is straightforward. The details are not very interesting. It 
might be remarked, parenthetically, that the substitutions in the number 
space, (2.1), commute both with the super-gauge transformations and with 
the Poincar6 transformations of space-time. The total symmetry group in 
either case (2.2) or (2.3) is thus fairly involved, but is in any case a finite- 
dimensional Lie group. 

3. SYMMETRY TRANSFORMATIONS OF TH E FIRST KIND 

Assuming a flat Minkowski space-time, the group of  symmetry trans- 
formations consists of Poincar6 transformations [with associated transforma- 

2 The dagger indicates Hermitian conjugation, T transposition, and the bar conjugate 
complex. 
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tions of the group SL(2, C) chosen so as to leave the spin matrices a~ form 
invariant], of super-gauge transformations of type (2.2) or (2.3), respectively, 
and of substitutions in the number space of type (2.1). The spinor '7, which is 
used to index super-gauge transformations, is constant. The product of 
"fermion numbers" is not associative, as the product does not lie in the 
vector space, but in the field of ordinary complex numbers. The only exception 
is the one-dimensional symmetric case; with N = 1 all fermion numbers are 
ordinary complex numbers. 

For the construction of super fields the algebraic properties of the 
fermion numbers are of great importance. Some of the rules of procedure in 
the formalism investigated here resemble those applying to the elements 
of a Grassmann algebra. Depending on whether m is assumed symmetric or 
antisymmetric, we have, for instance, 

nlr~,72 = -+ n2~ ,7~"n~ = + nl~",h (3.1) 

the plus corresponding to symmetric, the minus sign to antisymmetric m. One 
rule, which was of great value in the case of Grassmann elements, as well as 
with ordinary numbers, is the quartic "rearrangement" formula, 

This formula does not hold in our present situation, as the components of the 
four spinors involved are not elements of an associative algebra. 

Because of the unavailability of equation (3.2) all attempts to construct 
super fields (i.e., fields over the flat space-time manifold with arbitrary x 
dependence that would transform together and whose transformation law 
would be a representation of the complete symmetry group) have been 
unsuccessful. Such fields will be constructed over curved space-time manifolds 
in Section 4, by decoupling the super symmetry from the space-time diffeo- 
morphisms. There exist, however, representations with constant components. 
One representation, which is not faithful, consists of a constant vector u" and 
a constant spinor A, obeying the following transformation law under super- 
gauge transformations: 

8A = 0 

and 

8A = 0 

~ u  u = i ( , ? * a u A  - rlr~X) (3.3) 

8u" = ~7*a"A + ~z~'X (3.4) 

respectively, depending on whether m is chosen symmetric or antisymmetric. 
Equations (3.3) and (3.4) can be obtained from the notion of a "super space" 
as used by Salam and Strathdee (1974). The equations (2.2) and (2.3), respec- 
tively, define an infinitesimal mapping of super space on itself. The com- 
mutator of two such infinitesimal mappings may be interpreted as the Lie 



382 Bergmann and Komar 

derivative of one "super-vector" field with respect to the other, or as the 
infinitesimal transformation law of one of these fields under the infinitesimal 
mapping described by the other. This latter interpretation results in equations 
(3.3) and (3.4), respectively. 

Other representations, also with constant components, can be obtained 
by the following maneuver. Consider a scalar or tensor field over super space 
whose functional dependence on both the space-time and the spinor coordi- 
nates is a polynomial of degree P. The coefficients of the various products of 
the coordinates will be constants; under Poincar~ transformations these 
components will transform as components of scalars, tensors, spinors, and 
mixed quantities. As an example, consider a scalar U whose functional 
dependence on all coordinates is no higher than the first power. It may be 
written in the form 

U = a + b~x ~ + ArE0 + A%0 (3.5) 

Under an infinitesimal transformation (2.2) or (2.3) this scalar will undergo a 
change in its formal dependence on the coordinates x" and 0, so that 

3a = -(/r~7/ + A%~) 3b, = 0 
(3.6) 

for symmetric m, whereas for antisymmetric m one has 

3a = - ( A r ~  + A%~/) 3b~ = 0 
(3.7) 

Equations (3.6) and (3.7) are faithful representations of their respective 
symmetry groups. 

As a third example of a representation by constant components take a 
covariant vector in super space, v. Its components may be designated by the 
symbols v,, vrE, with v a spinor. The transformation law will be 

3v, = 0 3v = --i~cr"~/v, (3.8) 

o r  

the first expression again corresponding to symmetric m, the second to anti- 
symmetric m. The scalar product of the super multiplet (3.3), (3.4), and the 
expressions (3.8) is 

v . u  = v~u ~ + vrEA + v*EX (3.9) 

and is super-gauge invariant. 
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4. SYMMETRY TRANSFORMATIONS OF THE SECOND KIND 

In the previous section we had considered super-gauge transformations 
grafted on the Poincar6 group. For the commutator of two such transforma- 
tions to lie in the Poincar~ group the super-gauge transformations themselves 
had to be characterized by a finite number of (constant) parameters, i.e., they 
needed to be transformations of the first kind. That any such transformation 
group can be generalized into a transformation of the second kind has been 
demonstrated, e.g., by Yang and Mills (1954). Because of the intimate connec- 
tion between the super-gauge transformations and the Poincar6 group (or 
some other Lie group such as the conformal group), the transition to super- 
gauge transformations of the second kind is suggested in particular if the 
super-gauge transformations are to be tied to the group of diffeomorphic 
mappings of space-time onto itself, in other words, if we are concerned with 
"super gravity." 

Such a connection can be made if the representations described in 
Section 3 are tied to individual world points and if the Poincar6 group is 
replaced by tetrad transformations. In the case of the representations (3.3), 
(3.4), which do not involve a faithful representation of the full symmetry 
group, one need not consider Poincar6 transformations of the tetrad but can 
confine oneself to tetrad rotations (i.e., Lorentz transformations). In the 
following, this route will be followed, without foreclosing the consideration 
of a more elaborate scheme in the future. 

In setting up a formalism that will be manifestly covariant one needs to 
erect at each point of space-time a fiber, which will incorporate all the fields 
required. These will be the fields A and u" of equations (3.3), (3.4), and in 
addition some reference to the local tetrads. There are two entirely equivalent 
formulations; either one can retain the Pauli spin matrices o ~ as fixed arrays 
of pure numbers and work with the 16 components of four orthonormal world 
vectors at each point e~ ~, or one can work with the matrix-valued vector field 
~", which will be defined as a set of four linearly independent Hermitian 
2 x 2 matrices. In the latter formalism Lorentz rotations are represented by 
unimodular transformations in the complex two-dimensional spin space 
attached to each point. Finally, each fiber must permit substitutions in the 
space of fermion numbers. 

In order to have any meaningful analysis, one needs to have structures 
that define "horizontality," that is to say, those mappings of neighboring 
fibers on each other that will be considered identity mappings. The notion of 
horizontality is the straightforward generalization of parallel transfer of a 
vector from one world point to a neighboring world point. Horizontal 
displacement in a fiber bundle, just like parallel transfer, need not be integ- 
table: I f  fibers are mapped horizontally on neighboring fibers all along a 
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dosed path in space-time, the mapping of the initial fiber on itself on return 
to the point of departure is in general not an identity mapping. Any such 
nonidentical mapping can be represented for the infinitesimal closed path by 
a two-form, which for obvious reasons is usually referred to as the curvature. 

For the fixation of horizontal displacement, separate one-forms are 
needed to correspond to each kind of symmetry. For substitutions in the 
fermion number space there will be a real field fl,, 

mE, +/3 ,rm = 0 (4.1) 

in analogy to equation (2.1). For defining the horizontality of transport with 
respect to the complex two-dimensional spin space there will be a connection cq, 

tr ~, =~0 (4.2) 

There must be a connection y, to compensate for super-gauge transformations. 
The ordinary affine connection, the Christoffel symbols, is connected with the 
~, so as to render the generalized Pauli matrices o" covariantly constant. All 
told there are the following rules for horizontal displacement: 

L k v t )  

d~ = - ( ~ ,  + #,)a ax ,  

,(,,,o,>- 
L kyt) 

o r  

(4.3) 

du" = [ - ~ u  ~ (y*,o~;~ + ] - ~ , , ~ X )  dx, 
L L v t )  

depending on whether m is symmetric or antisymmetric. The corresponding 
commutators will map each fiber on itself: 

d,~" = (P*,,~,~" + ,~e,,~ - R~,,,a,~ '~) dx '  ^ dx  '~ = 0 

dh = -(B,,~ + e,,~),~ dx' A dx  ~ mB,,: + B ~ m  = 0 (4.4) 

du u = -(Rf,:au ~ + I'*,,;o~'A + F ~ X )  dx' A dx '~ 

Rf~ is the customary Riemann-Christoffel tensor that characterizes the 
metric curvature of space-time. P,~ is the spin curvature tensor, algebraically 
related to the Riemann-Christoffel tensor. The real field B,~ represents the 
nonintegrability of the structure m, which relates the elements of the fermion 
number space to those of the dual space. Finally, F,~ relates to the super-gauge 
transformations. The expression given above assumes that rn is antisymmetric. 
With symmetric m, the two terms involving P,~, in the last line, would have to 
have opposite signs and be multiplied by i. 
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P,~ is a spinor-valued two-form. It obeys the (infinitesimal) trans- 
formation law 

3I',~ = -(P,~ + B,,~)~7 (4.5) 

which does not involve derivatives of ~/; the transformation law of 9', does. 
One cannot construct super-gauge-invariant expressions from F,~ alone. This 
is possible by introducing the super field (3.8). The product of the components 
v,, ur~ by the right-hand sides of equations (4.4) (second line) will be super- 
gauge invariant. 

There are other methods that also lead to super-gauge-invariant vectors 
and tensors. With the help of the expressions (4.3) one can form the analog of 
covariant derivatives of super fields, e.g., u:,, which under super-gauge 
transformations obey a transformation law exactly analogous to that of the 
super field u itself. Its product by v will again be super-gauge invariant. From 
all of these expressions one can construct Lagrangians, for the formalism 
contemplated here involves a pseudo-Riemannian metric in space-time, deter- 
mined algebraically and uniquely by the field e". This metric tensor is given 
by the expression 

g,V = _�89 + ~v,ffu)~ (4.6) 

A possible term in a Lagrangian density is, for instance, 

L = ([gl)l/2g~'~u:~,.v:~, (4.7) 

where u, v and the connecting dot have the significance of equation (3.9). A 
differently structured term in a Lagrangian density may be obtained by 
multiplying the super-curvature tensor (4.4) by u and by v, and by squaring 
the resulting super-scalar-valued two-form. Thus the opportunities for con- 
structing super-gauge-invariant scalar densities are almost unlimited, and one 
will have to rely on physical motivations to make a selection. 

5. CONCLUDING REMARKS 

The purpose of this paper has been to demonstrate that there are 
mathematically well-defined quantities that permit the realization of gauge 
groups by transformations that mix quantities having half-odd spin with those 
having integral spin. There are mappings of super space (the topological 
product of space-time by a linear vector space) on itself which have the 
Poincar6 group or the Lorentz group as a subgroup and which resemble 
closely the groups investigated by Salam and Strathdee (1974). Indeed our 
structure groups need not differ from those found in the literature. The thrust 
of our paper is to call attention to group realizations more general than those 
in the literature. 
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Any of these constructions based on a flat space-time can be utilized to 
form a fiber bundle that admits general diffeomorphisms of  its base manifold, 
space-time, and a super-symmetry group of  its fibers. It  is probably possible 
to generate structures with a super-gauge-sensitive metric field as well, but 
this possibility has not yet been investigated. It appears certain, though, that 
there is a wealth of formal possibilities that resemble theories involving 
Grassmann elements but that avoid some of  the latter's conceptual difficulties. 
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